
IoT Aggregation Algorithm Coursework Andy Pack / 6420013

Figure 1: Demonstration of SAX aggregation with window size
of 2 and alphabet of length 4

1 Description

Symbolic Aggregation Approximation (SAX) was implemented
as an in-network data processing technique, compressing the
representation while allowing further processing on this sym-
bolic string. Figure 1 shows two rounds of SAX output follow-
ing data collection, a window size of 2 was used and an alphabet
of length 4, i.e the characters a through d inclusive.

The use of string representation allows further processing and
analysis techniques to be used such as string pattern matching,
Euclidean distance and hashing operations.

It is also an opportunity to reduce the required memory foot-
print. 12 C floats total 48 bytes of data, this can be reduced
by a factor of 4 using chars instead, a window size of 2 further
halves the number of output samples and lowers the required
memory to just 6 bytes.

2 Specification

SAX is implemented in two stages, that of transforming the
time-series into Piecewise Aggregate Approximation (PAA)
representation and then representing this numeric series with a
symbolic alphabet.

2.1 PAA

PAA is an effective method for reducing the dimensionality of
a time-series by focusing on the trends and patterns of the data
as opposed to individual values. It is a lossy operation that can

be used to strike a balance between frequent periodic sampling
in order to keep the system responsive while reducing the stor-
age and processing requirements for such a large data stream.
This process is completed in two steps, Z-normalisation and
aggregation.

Z-Normalisation The standard deviation and mean of the
data series were first calculated using previously written func-
tionality to calculate these values for arbitrary arrays of num-
bers. This normalisation process takes a series of data and
transforms it such that the output series has a mean of 0 and a
standard deviation of 1. This changes the context of the values
from being measured in lux to being a measure of a samples
distance from the mean, 0, in standard deviations. This allows
(somewhat) direct comparison of different time-series.

Aggregation Following Z-normalisation, the size of the series
is reduced by applying a windowing function. This takes sub-
sequent equally-sized groups of samples and reduces the group
to the mean of those values, reducing the length of the series
by a scale factor equal to the size of the group.

Following Z-normalisation and aggregation, the original time
series has been reduced to a given length of samples with a
mean of 0 and standard deviation of 1.

2.2 SAX

SAX is an extension to the PAA representation that uses an
alphabet of symbols instead of numeric values. Following Z-
normalisation as part of the PAA process, a time-series of data
will follow a Gaussian distribution profile. Each value describes
how many standard deviations it is away from the mean of the
series (how far away from the central Gaussian peak it is), an
approximation of the value could be found by dividing the area
of the Gaussian profile into segments and referring to each by
a character. Each data value can now be described by a seg-
ment identifier. These segments should not be of equal width,
however - values are likely to be closer to the mean, referring
to these by a single character would be unproductive. Instead
the Gaussian profile is divided into segments corresponding to
equal probabilities or areas under the curve.

These segments are realised using breakpoints, the standard
deviations that describe the edges of each segment. By com-
paring each datum to subsequent breakpoints the segment that
the value lies within can be identified and the corresponding
character retrieved for representation.

3 Implementation

The SAX functionality was added as an alternative buffer rotat-
ing mechanism over the original 12-to-1/4-to-1/12-to-12 aggre-
gation system. This rotation mechanism lies between receiving
the full data buffer on the processing thread and passing it to
the handleFinalBuffer(buffer) function for display.

November 2020 1



IoT Aggregation Algorithm Coursework Andy Pack / 6420013

Figure 2: Demonstration of SAX aggregation with window size
of 4 and alphabet of length 8

The length of the output buffer is calculated using the full data
buffer’s length and the group size with which it is divided. This
size is used to allocate a new buffer to store the PAA represen-
tation of the data.

From here the input buffer is Z-normalised using the
normaliseBuffer(buffer) function from the sax.h header.
This function iterates over each value in the buffer, subtracts
the buffer’s mean and then divides by the standard deviation
(the mean and standard deviation are stored as members of the
buffer prior to passing to the function).

Following this, the buffer is aggregated us-
ing the same 4-to-1 aggregation function
aggregateBuffer(bufferIn, bufferOut, groupSize)
used previously. This functionality was used as the group
size is variable and the same required windowing and average
function is used, as such it could be reused with the desired
aggregation level. Figure 2 shows an output using a window
size of 4 instead of figure 1’s width of 2. The output from this
function represents the PAA form of the initial data series.

The handleFinalBuffer(buffer) function takes a Buffer
struct as input which is defined as being a collection of floats.
In order to maintain this structure and compatibility with the
non-SAX aggregation, the buffer is passed to this function in
PAA form without SAX conversion to a string. In order to
complete the system, the buffer must be stringified within this
final method following a pre-processor check that SAX is being
used.

SAX symbolic representation is completed using the
stringifyBuffer(buffer) function of the sax.h header.
This function allocates a string of suitable size be-
fore iterating over each value of the buffer and calling
valueToSAXChar(inputValue) to retrieve the corresponding
char. As the breakpoints are a constant for a given number
of segments and would require computation, the values for
the breakpoints are defined by the pre-processor based on the
number of segments defined by the SAX_BREAKPOINTS macro.

For each value, the breakpoints are iterated over. Specific cases
are defined for the beginning and end of the breakpoints as these
are one-sided inequalities. For the rest, the value is compared
to two neighbouring breakpoints. A true condition for any of
these checks indicates that the correct segment for the value has
been identified. The same return value, SAX_CHAR_START + i,
is used in every case. SAX_CHAR_START is a macro used to define
the first character of the alphabet being used for SAX repre-
sentation (likely either ’a’ or ’A’), i is the iteration variable
for the loop, it is used as an offset from the alphabet start and
is evaluated to a char for return.

November 2020 2


	Description
	Specification
	PAA
	SAX

	Implementation

